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The hydrotreating process allows to convert petroleum heavy fractions into lighter products, 

valuing the residue, while impurities such as the heteroatoms, nitrogen, sulphur and oxygen are removed. 

The residue, and thus the hydrotreating effluents are very complex mixtures composed by a huge quantity 

and variety of chemical species, usually characterized by global analysis. However, this information is not 

enough to develop a kinetic model, therefore analysis at thermidor lumps level are required but, in order to 

obtain it, a long and costly experimental process is required. 

To overcome the difficulties mentioned before, a two-step algorithm, SR-REM, was applied to 

reconstruct hydrotreating effluents using numerical methods, by means of global analytical properties 

generating a set of molecules that are consistent with the experimental data and is further applied to other 

mass balance points of the hydrotreating unit, avoiding extra laboratorial work. 

Thus, in the first step of the algorithm an equimolar set of molecules is obtained by sampling 

molecular structural blocks in a stochastic way following certain rules, the building diagrams. Once the 

molecules are created a reconstruction by entropy maximization is applied in order to adjust the molar 

fractions. The methodology described was tested in previous work, showing promising results. However, 

the first step of the algorithm, the SR step, had some flaws when it aimed to predict some of the thermidor 

lumps heteroatoms. In the present work, an optimization to the SR step was made, tested to an hydrotreating 

unit and the results compared to the ones obtained before. 
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Introduction 
Petroleum , also known as crude oil, is a complex 

mixture of gaseous, liquid and solid compounds, 

comprising millions of naturally formed 

molecules, essentially composed by hydrogen 

and carbon, as well as significant presence of 

hetero atoms such as nitrogen, sulphur, oxygen 

and trace amounts of nickel and vanadium (1). 

 

Nowadays, the world demand for high-quality 

low boiling products such as gasoline and diesel 

has been increasing, at the same time the 

availability of high-quality crude reserves (low 

sulfur content) is decreasing, meaning that the  

 

quantity of natural resources with characteristics 

that would allow a higher production of lighter 

distillates is scarce. In consequence, refining 

these types of crude will yield a higher fraction 

of heavier distillates with low market value (2). 

 

To convert this low market value products in 

high value ones, refiners have to be equipped 

with processes like hydrotreating, that need 

continuous optimization. Thus, a key factor to 

improve conversion processes performance is the 

development of reliable and accurate kinetic 

models, however, to create such tools the 
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feedstock’s composition should be known in 

detail. 

 

Figure 1 Process modelling technology adapted 

from (1). 

 

At the present time, analytical tools are not able 

to provide such detailed molecular information. 

To overcome it, the proposed solution is the 

numeric reconstruction of heavier cuts using 

partial analytical data, chemical knowledge and 

model assumptions.  

Several authors suggested new methods like 

Quann and Jaffe, with a called structure-oriented 

lumping (SOL) in which hydrocarbon carbon 

molecules are represented as vectors of 22 

structure blocks (3). A method proposed by 

Zhang and Peng tried an approach named 

molecular type and homologous series (MTHS) 

similar to SOL using structural groupings to 

characterize petroleum mixtures, that will be 

conceived as matrix (4). Pyl proposed a model 

which is composed by a matrix generated from a 

composition modelling editor based on a library 

of molecules and a range of ebullition points. The 

author suggests using probability functions that 

describe chemical families as well as the 

distribution of carbon in each family (5). All the 

methods mentioned before are based in a library 

of molecules, in other words, a database that 

requires extensive laboratorial work, 

contradictory from what is pretended. 

Neurock suggested a stochastic methodology to 

transform global available analytical data into 

detailed molecular descriptions of petroleum 

feedstocks (6). Neurock described petroleum 

cuts as sets of distributions of molecular 

structural attributes (recurring to Boduszynski’s 

work (7)) and through the method of Monte-

Carlo generated a large amount of molecules. 

Integrating the obtained results in an 

optimization loop in which the distribution 

parameters are changed towards closing the gap 

between the generated mixture and overall 

proprieties of asphaltenes. Neurock proposed an 

interesting method to recreate petroleum cuts 

while representing the molecular polydiversity, 

however it didn’t take into account the presence 

of heteroatoms, which are quite problematic and 

present in considerable amounts in asphaltenic 

fractions to be ignored. 

Hudebine and Verstraete introduced 

heteroatoms, improved the optimizer and applied 

it to different petroleum fractions, nonetheless 

they noticed that a stochastic reconstruction is 

not capable to create a mixture of molecules 

where all the proprieties fitted to the cut to 

analyse because of the numerous constraints to 

be respected (8) (9).  

To face the limitations of SR, Hudebine proposed 

to combine the stochastic reconstruction with a 

matrix method called reconstruction by entropy 

maximization (REM), developed by Hudebine 

(10), based on the work of Allen and Liguras, 

which the main differences are in the way molar 

fractions are adjusted using the Shannon’s 

information theory. The SR will assume the role 

of creating an equimolar database of molecules 

relatively close to the experimental data, and 

REM adjust the molar fractions to refine results 

from the first step. The two-step algorithm SR-

REM will be the one applied in this work, so a   



detailed look will be given to each step of the 

model. 

Stochastic Reconstruction  
The method of Stochastic reconstruction aims the 

creation of an equimolar mixture that has the 

same proprieties of a certain petroleum fraction. 

To build this mixture of molecules the following 

principles are essential:  

1. A petroleum molecule can be described as an 

assembly of molecular attributes and structural 

blocks (e.g. molecule type, number of rings, 

number of side chains, length of the chains, etc.).  

2. A petroleum fraction can be characterized by 

means of a set of probability distribution 

functions (PDF’s) for these attributes and 

structural blocks.  

It is important to define properly the molecular 

attributes; those can vary with the petroleum cuts 

in which SR will be applied and are chosen by 

expert knowledge and information prevenient 

from analytical data. The structural blocks are the 

elemental constituents of the molecule, however 

it not enough to fully describe it, thus it is 

required to apply molecular attributes to describe 

the main characteristics of the molecule like the 

number of cycles, the length of the side chains or 

the number of rings.. From the principles 

mentioned before, an equimolar mixture of N 

molecules will be created by sampling the 

probability distribution function (PDF) via a 

Monte-Carlo procedure. The PDF’s attributes 

will be processed in a certain order, following 

certain rules based on chemical knowledge, 

building diagram B (figure 3), to avoid the 

formation of impossible or improbable 

molecules. 

 

The procedure will be repeated until the number 

of N molecules is reached, for each molecule the 

properties are calculated, permitting to calculate 

the properties of the global mixture, which will 

allow to compare the results with properties 

presented by the experimental data using an 

objective function. In order to minimize the 

objective function errors, the parameters of the 

distribution can be changed to find the mixture 

with characteristics closer to the experimental 

one.  

Figure 2 Building diagram B (13). 

Figure 3 Scheme of Stochastic Reconstruction 

adapted from (13). 



Reconstruction by entropy 

maximization 
Once the equimolar library of molecules is 

created using the SR, a different approach is 

made, a reconstruction by entropy maximization 

consists in adjusting the molar fractions of an 

existent mixture in order to reach the mixture’s 

properties pretended.  The adjustment was 

developed by Hudebine and Verstraete and is 

based in the matrix method of Allen et Liguras. 

However the criteria to refine the molecular 

fractions is to maximize the entropy term having 

in account a certain number of constrains. 

Basically, REM, involves 3 steps: 

1.-The first one is the creation of a library of 

molecules, which in our case is achieved by SR,  

2.-The definition of the constrains associated to: 

the analytical data and the respect of the mass 

balance among others,  

3.-The adjustment of the molar fractions 

maximizing entropy. 

The SR-REM method is an efficient way to 

reproduce petroleum cuts combining two 

different steps, SR, assuming that oil mixtures 

can be described by distributions of structural 

blocks, generates the database of an equimolar 

mixture of molecules, that will be refined by the 

adjustment of molar fractions performed by the 

REM step using the maximization of the entropy 

criteria under linear constrains. 

Methodology 
The required analytical data was supplied by IFP 

and it is respective to a hydrotreating unit, that is 

composed by four different mass balances 

performed at different operating conditions. The 

strategy is to use the first point, balance 1498, as 

reference to generate the library of molecules by 

stochastic reconstruction, which a detailed 

analysis is required. It is important to highlight 

that the SR will have a huge impact on the 

performance of the whole method, since the 

molecules built will influence the REM results, 

in other words, if molecules are not suitable, 

REM will have a poor adjustment. 

Once the molecules database is built, the REM 

step will be applied to the other mass balances 

referring to different operating conditions of the 

hydrotreating unit. 

Optimization 
The first runs of the algorithm had as objective 

the reproduction results obtained by Sofia 

Martins (11), having them as starting point for 

the present work (SR C). Afterwards, the mass 

balance discrepancies among the various 

analyses was fixed (SR C P). The remaining 

effort was trying to optimize the distribution 

parameters “manually” by adapting the best 

distribution result from a previous simulation as 

input to the next one (SR C OPTM). The results 

from these different approaches are displayed in 

figure 5.  

 

Figure 4 Scheme of SR-REM method.  



Since it is impossible to reconstruct a crude 

fraction if the SARA and the Thermidor Lumps 

(TL) are not coherent. Only the TL were gave as 

input to the code, knowing that if the 

reconstruction was able to adjust to it, all the 

global analysis would be fitted as consequence.  

This exercise showed an objective function of 

zero which either means that all data was 

perfectly fitted or the TL was not being taken into 

account, a debug through the algorithm showed 

that, actually the detailed analysis, TL, was not 

being considered by the objective function. Thus, 

it was important to test all three building 

diagrams (A, B, C) with the objective function 

fixed and considering the TL. 

As can be seen in Figure 6, the conclusion was 

the same as before, the best adjustment for TL, 

which is diagram C, still has the worst result for 

SARA, showing that the problem of this 

incoherence prevails. A further look into the 

algorithm was made to identify the origin of this 

problem. This analysis showed that the TL was 

not considered correctly in the objective 

function, since there was not a dependency 

between the TL and the SARA analysis, in other 

words the sum of the TL did not correspond to 

100%. 

The solution found was to use the global 

composition of an element respective to a family 

by boiling point in SARA in the objective 

function, instead of the elementary composition 

inside  of each family. Thus, is possible to ensure 

the concordance between SARA and TL, as it is 

shown in figure 7. 

Algorithm improvement 
The obtained molecules have a higher content of 

hydrogen than expected in Resins and 

Asphaltenes, meaning that the created molecules 

in these subfamilies are not aromatic enough. In 

this same families but respective to sulphur the 

content needs to be increased, however for 

Aromm and Arom it needs to be lowered. 

Besides the optimizations at the subfamilies level 

described before, it was necessary to improve the 

fitting to SARA families as well. For that the 

method Wiehe (12), which is a diagram   
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Figure 7 Global approach, concordance between 

thermidor lumps and SARA. 
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Figure 5 Results from the various SR approaches 

with diagram C. 

Figure 6 Results for building diagrams (A,B,C) after 

fixing objective function by including the TL. 



used by the algorithm to classify molecules in 

each SARA family, was analysed. 

Results 
For a better understanding of the displayed 

results it is important to schematize the line of 

thought followed. The first output from the 

model analysed was the results to diagram B, in 

which, the objective was to understand if the 

changes made were effective and resulted in the 

improvement of the previous results, mainly in 

SR step. Having the data from SR B, it is 

essential to see the impact of those in REM B. 

Essentially, understanding if the diagram with 

the adjustments made was able to build better 

molecules to fit to the real mixture.  

SR B 
As seen by the results presented in Figure 8, the 

algorithm can generate a set of molecules that 

can reproduce accurately the global properties 

exhibited by the mixture which the analytical 

data is from. However, all the small 

discrepancies presented in each analysis will be 

reflected in model predictions’ performance of 

the thermidor lumps, since it is a result from all 

the data presented before. 

  

Figure 8 SR B global analyses (elemental analysis, distillation curve, SARA and subSARA results for building diagram B. 

Figure 9 SR B Thermidor Lumps results for building diagram B. 



The results obtained for Thermidor lumps are 

displayed in Figure 9 for H, S and N 

distributions. An overall good fitting is achieved 

with the values obtained by the model following 

the trend of the analytical data, with most of the 

results within the experimental error. 

For S distribution sulphur in Aromm, Resp and 

Asph subfamilies have the poorest fitting, for H 

distribution Arom, Arop and Asph are the ones 

with a not so accurate adjustment, and in N 

distribution a considerable error is present in 

Resm.  

Knowing that one of the biggest issues in SR step 

was related to hydrogen and sulphur distribution, 

it is interesting to compare the obtained results 

with those of the previous work. This exercise is 

present in figure 9, where is possible to observe 

an relative error decrease from 28% to around 

12%, where hydrogen distribution decreased 

from 9% to 7% and sulphur error dropped from 

80% to an error around 17%. 

REM B 
The REM consists in a molar fraction adjustment 

of a pre-existent equimolar mixture, in our case, 

the one generated by the SR B, to adjust to the 

analytical analysis. Although REM requires a 

pre-defined library of molecules to be performed, 

this methodology allows to recreate a mixture 

requiring less time and less analytical data than 

SR step, relying only in global analysis.  

The three-analysis observed (figure 10) show an 

almost perfect fit to the experimental data to this 

new point of mass balance in the process.  

Consequently, the REM step adjusts accurately 

the molar fractions of the library of molecules 

generated by SR to meet the global properties of 

a new mixture.  

Figure 10 REM B global analyses (elemental analysis, distillation curve, SARA and subSARA results for building diagram B. 

 



To understand if the model is capable to meet the 

experimental data related to the subSARA 

families, this parameter was added to the REM 

code, however it was not introduced in the matrix 

of constrains, in other words it is not take into 

account to adjust the molar fractions, thus being 

a consequence of the SARA, elemental analysis 

and distillation curve adjustments. The results 

respective to subSARA are displayed in figure 

10, a very good fit is obtained for aromatics, 

resins and asphaltenes, however a poor fitting is 

exhibited for saturates (Satmm, Satm and Satp).  

Finally, the results for Thermidor lumps, Figure 

11, where can be seen that the values obtained by 

REM follow the trend of the analytical data, but 

there are some considerable differences in 

sulphur distribution, especially for Aromm and 

Asph subfamilies. Regarding the Hydrogen 

distribution the main issues are related to Resp, 

Arom and Aromm. Nitrogen distribution can 

only fit for Resp while the remaining values are 

not well adjusted.  

To summarize, in the previous work, the 

deviations in the SR step were the same as the 

ones REM. In the present work, after optimizing 

and decreasing the error respective to the SR step 

the results shown by REM are improved. 

However, does not have the similarities with 

SR’s errors like before, exposing bigger errors. 

This means that the optimization of SR step can 

only improve REM to a certain level and that can 

be clearly seen by the presented values in table 1. 

In table 1 is presented a summary of the results 

obtained and, as observed before, all the 

outcomes from global analysis are improved in 

the REM step, however for detailed analysis, 

subSARA and Thermidor Lumps, the REM stage 

cannot refine the output from SR step and gets 

even worst results. 

A detail that is important to highlight is the fact 

that although the REM step is able to achieve a 

perfect SARA adjustment, but when it comes to 

the subSARA families the outcome is worse than 

the obtained in SR. So, a better fit in SARA did 

not make a better adjustment in subSARA which 

 Elemental 

Analysis 
Distillation Curve SARA subSARA 

Thermidor 

Lumps 

Building 

Diagram B 

Abs. 

Error 

Rel. 

Error 

Abs. 

Error 

Rel. 

Error 

Abs. 

Error 

Rel. 

Error 

Abs. 

Error 

Rel. 

Error 

Abs. 

Error 

Rel. 

Error 

SR 0,36 6,26% 42323,05 5,34% 0,22 1,10% 1,00 4,16% 38,60 12,80% 

REM 
1,39E-

06 
0,05% 21189,91 2,34% 0 0,00% 6,65 14,30% 58,88 19,34% 

Figure 11 REM B Thermidor Lumps results for building diagram B and comparison with previous work 

Table 1 Summary of SR and REM results for diagram B 



should be expected since one is consequence of 

the other. This can mean that the problem in 

REM can be correlated to the incapacity to adjust 

subSARA, since it is not being considered in the 

matrix of constrains for REM method. Since, 

subSARA is not well predicted, therefore 

Thermidor lumps show a worst outcome than SR, 

passing from a 12% relative error to 19%. 

Conclusions 
In this work an improvement of the methodology 

to reconstruct residue hydrotreating effluents is 

proposed. The methodology consisted in two 

different steps. The first one, a stochastic 

reconstruction (SR) followed by a second named 

reconstruction by entropy maximization (REM). 

 The first approach intended to get better results 

in the SR, since it was demonstrated by previous 

works that this step would greatly influence the 

REM step. The modifications led to reducing the 

BD B SR relative error from 27.75% to 12.80%, 

indicating that a more suitable library of 

molecules was built to reconstruct the residue 

hydrotreating effluents by the BD’s. 

Applying the second step, REM, to the generated 

set of molecules from BD B to recreate another 

point of the hydrotreating residue effluents using 

only global analysis, it was possible to improve 

the previous REM results obtained decreasing 

the error of BD B from 24.31% to 19.34%. 

An overall improvement for this methodology 

was achieved with errors decreasing in both SR 

and REM step considerably.  

Another particular detail is that the REM errors 

are always higher than the ones achieved by the 

SR in detailed analysis (subSARA and TL), and 

the opposite was expected since the REM is a 

refinement method that should get closer to the 

analytical data by changing the molar factions.  

One reasonable explanation can lay on the fact 

that the model is producing relatively low errors 

results or at least really close to the experimental 

ones and so REM is not being able to suffer the 

same magnitude of error’s reduction. 

An important conclusion to make is to 

understand what it is holding back the REM 

errors to get lowered to the same level to SR, if 

in one hand, the problem is related with BD’s and 

the way the library of molecules is built or, in the 

other hand, the problem is related to the REM 

algorithm.  

Having the last conclusion in mind and getting 

BD’s out of the picture, for further developments 

of the present topic , should be interesting to have 

a deeper look into the REM step and understand 

why detailed analysis such subSARA and 

thermidor lumps are not being capable to adjust 

molar fractions to get a better prediction. One 

interesting approach to optimize and study the 

REM behaviour can be the introduction of 

subSARA in the constrains matrix of this 

method.  

Another key factor that could have influenced the 

performance of all the diagrams tests is related to 

the fact that  only three types of distributions 

were used to describe the structural blocks of 

molecules, leaving room to try another types of 

distributions similarly to what was done in 

previous works at IFP. 
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